The generator matrix
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X X 1 X X X 1 X X 0 X 0 X 0 0 X 0 0 X X 0 0 0 X 0 0 0 1 X 0 0
0 X 0 0 0 0 0 0 0 X X X X X X X 0 0 0 0 0 0 0 0 X X X X X X X X 0 X 0 0 0 X X X X 0 0 0 X X 0 X X 0 X X X X X 0 0 0
0 0 X 0 0 0 X X X X X 0 X X 0 0 0 0 0 0 X X X X X X X X X X X X X 0 X X X 0 X 0 X X 0 X 0 0 X X X X 0 0 0 0 0 0 0 0
0 0 0 X 0 X X X 0 0 0 0 X X X X 0 0 X X X X 0 0 0 0 X 0 0 X X X X X X 0 0 X X X X X X X X 0 0 0 0 0 0 0 0 X X X X X
0 0 0 0 X X 0 X X 0 X X X 0 0 X 0 X X 0 0 X X 0 0 X X 0 X 0 X 0 0 0 X X 0 0 0 X X X X 0 X X 0 0 X X 0 X 0 0 X 0 0 X
generates a code of length 58 over Z2[X]/(X^2) who´s minimum homogenous weight is 58.
Homogenous weight enumerator: w(x)=1x^0+48x^58+8x^60+7x^64
The gray image is a linear code over GF(2) with n=116, k=6 and d=58.
As d=58 is an upper bound for linear (116,6,2)-codes, this code is optimal over Z2[X]/(X^2) for dimension 6.
This code was found by Heurico 1.16 in 0.217 seconds.